Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
边缘计算广泛用于视频分析。为了减轻准确性和成本之间的固有张力,已经提出了各种视频分析管道,以优化GPU在边缘节点上的使用。但是,我们发现,由于视频内容的变化,在管道的不同位置的视频内容变化,亚次采样和过滤,因此为边缘节点提供的GPU计算资源通常被低估了。与模型和管道优化相反,在这项工作中,我们使用非确定性和分散的闲置GPU资源研究了机会数据增强的问题。具体而言,我们提出了一个特定于任务的歧视和增强模块以及一种模型感知的对抗性训练机制,提供了一种以准确有效的方式识别和转换特定于视频管道的低质量图像的方法。在延迟和GPU资源限制下,进一步开发了多个EXIT模型结构和资源感知调度程序,以做出在线增强决策和细粒度的执行。多个视频分析管道和数据集的实验表明,通过明智地分配少量的空闲资源,这些框架上倾向于通过增强而产生更大的边际收益,我们的系统将DNN对象检测准确性提高了7.3-11.3 \%,而不会产生任何潜行成本。
translated by 谷歌翻译
如今,DNN在边缘设备上无处不在。随着其重要性和用例的越来越重要,它不太可能将所有DNN包装到设备内存中,并期望每个推断都被加热。因此,寒冷的推断,读取,初始化和执行DNN模型的过程变得司空见惯,并且迫切要求优化其性能。为此,我们提出了NNV12,这是第一个为冷推理NNV12优化的设备推理引擎是在3个新颖的优化旋钮上构建的:为每个DNN操作员选择适当的内核(实现),绕过权重转换过程,以缓存该帖子。 - 在磁盘上转移权重,并在不对称处理器上进行了许多核的管道执行。为了解决巨大的搜索空间,NNV12采用了基于启发式的计划来获得近乎最佳的内核计划计划。我们完全实施了NNV12的原型,并在广泛的实验中评估了其性能。它表明,与Edge CPU和GPU上的最先进的DNN发动机相比,NNV12的达到15.2倍和401.5倍。
translated by 谷歌翻译
使用神经网络代表3D对象已变得流行。但是,许多以前的作品采用具有固定体系结构和大小的神经网络来表示不同的3D对象,这导致简单对象的网络参数过多,并且对复杂对象的重建精度有限。对于每个3D模型,希望拥有尽可能少的参数以实现高保真重建的端到端神经网络。在本文中,我们提出了一种利用神经体系结构搜索(NAS)和二进制分类的高效体素重建方法。以层数,每一层的节点数量以及每一层的激活函数为搜索空间,可以根据强化学习技术获得特定的网络体系结构。此外,为了摆脱网络推理后使用的传统表面重建算法(例如,行进立方体),我们通过对二进制体素进行分类来完成端到端网络。与其他签名的距离字段(SDF)预测或二进制分类网络相比,我们的方法使用更少的网络参数获得了更高的重建精度。
translated by 谷歌翻译
深度神经网络(DNN)已广泛采用健康风险预测,以提供医疗保健诊断和治疗。为了评估其稳健性,现有研究在型号参数可访问的白色/灰度箱设置中进行对抗性攻击。然而,即使大多数现实世界的型号训练私有数据并在云上作为黑匣子服务发布,也是更现实的黑盒对抗性攻击。为了填补这一差距,我们提出了针对Medattacker的健康风险预测模型的第一个黑匣子对抗攻击方法来调查他们的脆弱性。 MedAttacker通过两个步骤解决了EHR数据所带来的挑战:层次定位选择,它选择强化学习(RL)框架中的攻击位置并替换替代替代基于分数的原则。特别是,通过考虑EHR中的时间上下文,它通过使用每次访问的贡献分数和每个代码的显着分数来初始化其RL位置选择策略,这可以与决定性变化决定的确定性替代选择过程很好地集成。在实验中,Medattacker始终如一地实现了最高的平均成功率,并且在某些情况下攻击了在多次真实数据集中的黑匣子环境中的三个高级健康风险预测模型时,最近的白盒EHR对抗攻击技术甚至优于最近的白盒EHR对抗性攻击技术。此外,基于实验结果,我们包括讨论捍卫EHR对抗性攻击。
translated by 谷歌翻译
医疗应用从计算机视觉中的快速进步受益。特别是患者监测,卧床人体姿势估计提供了重要的健康相关指标,具有医学条件评估的潜在价值。尽管该领域的进展巨大,但由于闭塞期间的大量模糊性,并且缺乏用于模型训练的手动标记数据的大型车辆,仍然是一个具有挑战性的任务,特别是具有隐私保留的热红外成像等领域,因此极大的兴趣。通过直接从数据学习功能的自我监督方法的有效性,我们提出了一种多模态条件变形AutoEncoder(MC-VAE),其能够重建在训练期间看到的缺失的模态。这种方法与HRNET一起使用,以使单个模态推断用于床上姿势估计。通过广泛的评估,我们证明身体位置可以从可用的方式得到有效地识别,通过高度依赖于在推理时间访问多种模式的基线模型的PAR结果上实现了PAR结果。拟议的框架支持未来的自我监督学习研究,从单个来源生成强大的模型,并期望它概括了临床环境中的许多未知分布。
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译